US ERA ARCHIVE DOCUMENT

Mechanistic Indicators of Childhood Asthma (MICA) -Integrating Environmental, Clinical and Susceptibility Markers to Improve the Impact of Human Air Pollution Studies.

Jane E. Gallagher Ph.D.
Human Studies Division
ORD NHEERL EPA
September 24-25 2007
Public Health Applications of Human Biomonitoring

Advances in biomarker development have improved our ability to detect early changes at the molecular and cellular level.

Battery of endpoints Agency Capturing Net effect—over several mechanisms of action/ classes

- Comet assay
- > P53
- > FISH
- > 1-OH pyrene
- Cholinesterase inhibition
- Cross-linking metals formaldehyde

- > HPRT
- > DNA adducts methods
- Mutagen sensitivity
- Oxidative damage
- Mutagenicity

Integrated measure of dose across classes of chemicals

EvolvingTechnologies

Environment Health Scientists

Clinicians

Environmental Studies Benefit from Knowledge Gained from Clinical Disease Studies (and visa versa)

- What factors affect a persons risk for a number of health conditions.
- Early indicators/detection of disease
- Identify Genetic variants that increase susceptibility
- •Determine whether the effect of genetic variants that increase risk is different in the presence of environmental exposures

Change in research paradigm

- >Work across disciplines
- ➤ Give up data for the greater good
- >communicate

MICA

- A childhood asthma study and Parallel rodent study
- ➤ A NHEERL and NCCT Computational Toxicology study
- Combines and Integrates biomarkers of exposure effects and susceptibility in the context of clinical measurements and disease (asthma) outcome.

COMPUTATIONAL

National Center for Computational Toxicology

Goals
Improve linkages in the source to outcome paradigm

- Provide predictive models for Hazard ID
- •Improve Quantitative Risk assessment Dose, species, chemical class

7 New Starts ---MICA

RNA--- Blood Gene expression DNA ----11 genes 55 SNP

SOURCE

HEALTH OUTCOME

INTERNAL DOSE

INTEGRATED DOSE

EARLY RESPONSES

MICA

Vacuum dust and

Passive monitoring

BMI
Blood Pressure
O2 Saturation
Cell differentials
Blood Chemistry
Cytokines
Creatinine
cotinine
Medications

MICA

Objective

Increase our understanding of asthma by assessing the complex gene/environmental relationships through the combined use of innovative methods to manage and analyze multifactorial data

MICA RODENT Phase 1

Childhood asthma Phase 2

11 polymorphic genes 55 SNP

*EPA MICA Nested Within Detroit Children's Health Study

PEPA National Exposure and Research United States Environmental Protection Agency Detroit Exposure Aerosol Research Study "DEARS"

Map of Wayne County (Detroit area), showing Interstate Freeways and AIRS Monitoring Sites. Study participants will be selected for monitoring from the seven circled areas.

MICA

- 200 children (asthma and no asthma) 9-12 years of age
- 100 families participated in self monitoring (indoor outdoor) as part of MICA air
- Vacuum Dust and medication list brought to clinic
- Educational and "station walk through" presentation to provide context to the study
- Consent assent and Questionnaire
- Lung function, NO ex and odor testing
- > Blood, urine, fingernails collected
- > 90 percent of subjects provided samples at each station.

MICA Childhood Study Multiple Risk Factors

- >Rodent Study
- > Detroit AIR
- Concentrated Air Particles Exposures

MSU Mobile Air Research Laboratory

Air Particle
Concentrator
and Inhalation
Exposure System
for Laboratory
Rodents

Animals are exposed to concentrated fine and ultrafine particles in specially designed shoebox cages

MICA (I)

Evaluate Utility of Rodent models for analyzing gene expression data in childhood asthma study

Gene expression - RNA Environmental Protection Genotyping – DNA (11 genes 55 SNP) Agency Genotyping – DNA (11 genes 55 SNP)

AIR/DUST

Indoor outdoor PAH VOC No2 03 **Allergens** Molds

DOSE

Metals **Heavy Metals** PAH metabolites **ETS** Pb Hg **Napthols Phenanthrols**

INTEGRATED DOSE

ROS **Cholinesterase Mutagenicity** 1 OH Pyrene **Antibodies to** nervous system Cotinine proteins Coagulation factors

Health Effect Asthma

Lung function NOex Antioxidants Allergen skin testing **Plasma ROS Cytokines Blood panel Cell surface** markers

Passive monitoring: N0₂, PAHs VOC, (indoor and outdoors)

Vacuum dust

Urine

Serum

Plasma

Whole

Blood

Nails

Metals, PAHs, aero-allergens mold, endotoxin)

Biomarkers--- Clinical and Environmental

Urine	Cotinine Creatinine							

Urine Metals: Mercury, Cadmiun, Arsenic, Chromium, Manganese, Nickel

Urine Mutagenicity Assays

Metabolites phthalates

Autoantibodies for nervous system proteins, Blood Chemistry, Total IgE

and specific antibodies to common aero-allergens (multiscreen inhalant and food antibody series)- *dust mite, Cockroach, Mouse, Rat Urine Protein,

1- hydroxpyrene (1-OH pyrene) Napthols, Phenanthrols, Hydrocarbon

Reactive Oxygen Species, cytokines (IL4, 6 IL13), tumor necrosis factoralpha, c-reactive protein, fibrinogen

glycosolated hemoglobin

hematology panel, lead and mercury, Gene expression (RNA),

Mercury, Cadmium, Arsenic, Chromium, Manganese, Nickel

Serum IgE-inducing proteins associated with fungal exposures

genes 55 SNP

NOW WHAT ???

CINCINNATI CHILDRENS HOSPITAL

J ALLER GY CLIN IMMUNOL VOLUME 115, NUMBER 2

NORMAL

Stable Asthmatics

UnStable Asthmatics

Guajardo et al 247

NASAL EPITHELIAL CELLS

Jesus R. Guajardo, MD, MHPE, ^a Kathleen W. Schleifer, PhD, ^b Michael O. Daines, MD, ^a Richard M. Ruddy, MD, ^c Bruce J. Aronow, PhD, ^d Marsha Wills-Karp, PhD, ^b and Gurjit K. Khurana Hershey, MD, PhD ^a Cincinnati, Ohio

Biomarkers Exposure/Clinical indicators

Biomarker Needs

- Exposure biomarkers in the context of clinical health indicators
- Mechanistic information test biological plausibility in rodents
- Validation of surrogate cells with target tissue responses

Archiving of biological and environmental samples and measurements as new technologies advance

Summary

 High-data content technologies, elucidating the genetic and environmental basis for toxicity and disease

Integration of Diverse Set United States Environmental Protection of exposure, effects and susceptibility Agency

Gene expression arrays

statistical analysis.

genes, pathways, and networks

bioinformatic

SEPA United States Environmental Production Cknowledgements Agency

PHASE II MICA

National Health Exposure and Effects Laboratory

Stephen Edwards

Elaine Hubal

David Reif

National Center for Computational Toxicology

Acknowledgements

Westat

Henry Ford Health System

Clinic

Henry Ford Health System-lab

Acknowledgements

United States Environmental Protection

MICA-HSD

Ed Hudgens

Gina Andrews
Brooke Heidenfelder

Jeff Inmon

Mary Johnson

Danelle Lobdell

Pauline Mendola

Jim Prah

Scott Rhoney

Elizabeth Sams

DCHS

Lucas Neas

Ann Williams

NCCT

Elaine Hubal

David Reif

Administrative

Walter Breyer

Edward Strubble

Mike Ray QA

Debra Walsh

Kay Williams

Nurses HSD

Mary Ann .Bassett

Deb Levin

Tracy. Montilla

Westat

Andrea Ware

IRB

Richard Herman

Monica Nees

Contracts

Robin Harris

Jennifer Hill

Lenora Hilliard

Student Contractors

Chris Garlington

Chrissy Lin

Sharon Myers

Peter Stone

NERL

Shaibal Mukergee

Haluk Ozkaynak

Ron Williams

Dan Vallero

NERL Cincinnati

Stephen Vesper

ETD

Gary Hatch

Marsha Ward et al

Kay Crissman

McGee

Genomics core

Susan Hester

Chris Corton

NHEERL Office

of the Director

Stephen

Edwards

ECD

David DeMarini

Region 5

George Bollweg Jackie Nwai

Michigan State U.

J. Harkema Lori Bramble

Mercy College

H. El Fawal

Johns Hopkins

Robert Hamilton

John Wiseman

Carol Schultz

Harvard

University

Rutgers University

Tina Fain

UNC

Stephen Rappaport

Suryamya W.

SWRI

David Caaman

RTI

Frank Weber

Peter Groshe

Westat

Kurt Patrizi

Henry Ford Health

System

Clinical and Lab